
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 7, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Digital Signature Verification in PDF

 Student: Tomáš Stefan

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

1. Study the current theory, recommendations and best practices of digital signatures.
2. Research the current state of the art in digital signatures of PDF documents on the Linux operating
systems.
3. Discuss the security aspects of signature verification, e.g. certificate storage, revocation, etc.
4. Write a C or C++ library for verification of digital signatures in PDF's.
5. Demonstrate the use of this library by developing a command line application for PDF signature
verification.
6. Discuss your results, with focus on their security aspects.

References

Will be provided by the supervisor.

Bachelor’s thesis

Digital Signature Verification in PDF

Tomáš Stefan

Department of Computer Systems
Supervisor: Ing. Josef Kokeš

May 10, 2018

Acknowledgements

I would like to express my deep gratitude to my supervisor Ing. Josef Kokeš
for his constructive suggestions and quick reviews. I would also like to thank
my family for their support throughout my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 10, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Tomáš Stefan. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Stefan, Tomáš. Digital Signature Verification in PDF. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2018.

Abstract

The subject of the presented thesis is the area of digital signatures with special
attention to their use in PDF files. A short introduction containing basic
principles and a summary of essential features are provided, as well as the
basics of the PDF file structure. Different types of digital signatures in PDF
files are described in more detail. A way to verify the validity of the basic
PDF digital signature in Linux is demonstrated with a library written in C
and a simple command line application.

Keywords digital signature, verification, PDF, C library, Linux

vii

Abstrakt

Tématem předkládané práce je oblast digitálńıho podpisu se zvláštńım d̊u-
razem na jeho použit́ı v PDF souborech. Práce poskytuje stručný úvod do
problematiky včetně základńıch princip̊u, podstatných vlastnost́ı, popisuje
také základńı strukturu PDF souboru. Podrobněji se zabývá r̊uznými typy
digitálńıch podpis̊u, které se v PDF souborech vyskytuj́ı. Zp̊usob ověřeńı
základńıho druhu digitálńıho podpisu PDF souboru v Linuxu je demonstrován
pomoćı knihovny v jazyce C a jednoduché konzolové aplikace.

Kĺıčová slova elektronický podpis, ověřováńı, PDF, C knihovna, Linux

ix

Contents

Introduction 1

1 Digital signatures 3
1.1 Signature in general . 4
1.2 Public Key Infrastructure . 7
1.3 Security aspects . 7

1.3.1 Symantec CA . 7
1.3.2 Revocation . 8

2 Signatures in PDF 11
2.1 Portable Document Format . 11

2.1.1 Incremental updates . 13
2.2 Signature in PDF . 14

2.2.1 PKCS#1 . 17
2.2.2 PKCS#7 (CMS) . 17

2.3 Transform methods . 19
2.3.1 DocMDP . 19
2.3.2 UR . 20
2.3.3 FieldMDP . 21

3 Signature support in applications 23

4 Implementation 27
4.1 Design and preliminaries . 27
4.2 PDF-Sigil library . 28
4.3 Command-line tool . 29
4.4 Results . 30
4.5 Security . 31

Conclusion 35

xi

Bibliography 37

A Acronyms 43

B Program output 45

C Contents of the enclosed CD 47

xii

List of Figures

1.1 Signature generation . 6
1.2 Signature verification . 6

2.1 PDF file structure . 14
2.2 PDF incremental update . 15

xiii

List of Tables

1.1 Common hash functions in digital signatures 5

2.1 PKCS#1 signature properties . 17
2.2 PKCS#7 signature properties . 18

3.1 PDF viewers under Linux . 24
3.2 PDF signature related software . 25

xv

Introduction

The Portable Document Format (PDF) is a widespread format used to store
and interchange various documents and publications. The main advantage
of this format over its competitors is the portability. With PDF, it is almost
certain that the document looks exactly the same for everyone, and on various
devices (included printed sheets).

These days, PDF is not just about showing text and images; it can contain
much more (forms, music, video, controllable three-dimensional models, and
also some security features). The security features available in PDF include
content encryption, digital signatures, and timestamps. This thesis will focus
on the area of digital signatures in PDF.

The goal of the thesis is to introduce digital signatures in PDF, discuss
the security aspects of signature verification, and finally provide a C/C++
library for verification of digital signatures in PDF together with a proof-of-
concept command line application using this library, both targeting primarily
the Unix-like OS.

The main motivation for looking into details of the subject is the lack of
implementations of this feature in most of the libraries and applications in the
Linux world.

Chapter 1 provides a general introduction to the digital signature world,
basic principles of signing documents and signature verification. The struc-
ture of the PDF file with the focus on the digital signatures, their types and
transform methods is described in chapter 2. The overview of applications
and tools that work with PDF files in Linux, especially with regard to their
support for the digital signatures, is presented in chapter 3. The practical
contribution of the author in the form of a library for the digital signature
verification in a PDF document is described in chapter 4 together with a sim-
ple command line application that demonstrates the functionality. Finally,
the achieved results are subjected to a critical evaluation.

1

Chapter 1
Digital signatures

The most common way of authentication that has been in use for centuries
is a handwritten signature. It is a form of behavioral biometric and is eas-
ier to forge than other modern biometric methods such as fingerprint or iris
scan. The process of verification of handwritten signatures was improved with
modern technologies. In addition to a static (off-line) signature, where the ver-
ification is performed on the resulting image, there is a new dynamic (on-line)
type of signature written using a digitizing tablet, which also takes into ac-
count dynamic properties such as pressure, time, and a number of strokes.
[1]

However, all this progress was not sufficient for some of the needs in current
applications. And that is where the digital signature comes to play.

For simplicity, let us imagine digital signatures as some kind of “magic”
that ensures a few important properties to the signed data. The following
holds not only in the context of PDF but generally with various kinds of
objects. These properties are:

Authenticity

means everyone can verify that the declared person really created the
digital signature over some data (it is called signing the data). It is
important to note that digital signature cannot exist on its own. It
always has to be assigned to some data.

Data integrity

ensures it is always possible to decide whether the signed data were ma-
nipulated in any way or not. And it does not matter if the manipulation
is a complete rewrite of the document or just addition of one space at
the end that people will not even notice.

3

1. Digital signatures

Non-repudiation
provides another safety mechanism important for real-world application
of digital signatures. It means the author of the digital signature cannot
deny signing the data. [2]

There is also one special kind of digital signature called timestamp. The
timestamp proves the signed data were created before a specified time. It
does not tell exactly when. It could be a second before or it could be a ten
years before. But after the timestamp has been applied to the data, there is
no doubt the document existed at the moment of signing.

After putting all that together, we have everything we need as an electronic
equivalent to a handwritten signature. It is even better in some aspects, but
everything has its pros and cons.

1.1 Signature in general

The process of applying a digital signature begins with hashing the data.
There is a specific category of functions called hash functions. These hash
functions take variable length data (from messages with zero length to really
large like whole drive images) as an input and produce a constant length
output that is relatively short. The output is called a message digest or
sometimes is referred to as a hash. The whole original message has to be
involved in some way to ensure data integrity while using the hash allows us
to reduce the size of the signature as well as the time needed1 for both creation
and verification of the signature.

Not all hash functions are suitable in the context of digital signatures.
With so-called secure hash functions it is computationally infeasible to:

• find two different messages that will produce exactly the same output
of a hash function (collision of the first kind)

• find a different message to the given one that will result in exactly the
same output of a hash function (collision of the second kind) [3]

Although the two problems seem to be very similar, their complexity is
significantly different. To find a collision of the first kind with a 50% proba-
bility, the total number of messages to try is approximately 2n/2, where n is
the length of the message digest (in bits). This is a much lower number than
expected. The reason behind this is called the birthday paradox. However, to
find a collision of the second kind with a 50% probability, the total number of
messages to try is much higher, close to 2n. [4]

To give an example what this really means, let us consider finding a col-
lision with a 256-bit hash function, e.g. SHA-256. The number of possible

1The asymmetric encryption is a relativelly slow process.

4

1.1. Signature in general

messages to go through to have a 50% probability of finding a collision of the
first kind is approximately 2128. However, with added restriction of finding a
collision to the given message, the number increases close to 2256.

Details of some commonly used hash functions in digital signatures are
shown in Table 1.1. [5, 6]

Table 1.1: Common hash functions in digital signatures

Algorithm Input size (bits) Hash size (bits)

SHA-1 < 264 160
SHA-256 < 264 256
SHA-384 < 2128 384
SHA-512 < 2128 512
RIPEMD160 < 264 160

When talking about secure hash functions, it is also important to note
that SHA-1 is already considered deprecated and other hash functions should
be used instead. The reason behind is that the first collision has already been
found. The project Shattered succeeded in finding two different PDF files
producing the same message digest with SHA-1 (collision of the first kind).
[7]

Another important concept is encryption, especially asymmetric encryp-
tion. There, people operate with two keys. One is called a public key and can
be shared with everyone else. This one is used for encryption of the data. The
other key is called a private key, shall be kept secret and the original data can
be restored only with the knowledge of this private key. [3]

In a typical use case, one person (traditionally called Alice) provides her
public key over a (possibly insecure) channel to other people (like uploading
to a web page). Another person (Bob) wants to send a secret message to
Alice. To do so, he encrypts the data using Alice’s public key and sends the
message. Only Alice knows the private key that can decrypt the message.

In digital signatures, the asymmetric cryptography is used in exactly the
opposite way. Again, everyone can know the public key and the private key
shall be kept secret. However, the process of signing is done using the private
key and verification with the public key. The signing is, in fact, an encryption
of the hash using the private key and attaching the value to the original data.
And verification of the digital signature includes decryption of the signature
and comparison to a computed value over the same data. The signing phase
is shown in Figure 1.1, and the verification phase is in Figure 1.2.

5

1. Digital signatures

Hash function

Hash

Original file

Signature

PDF PDF

16b42101cc9bd2a3863c533d81f1c764d165bc5b

PRIVATE

Figure 1.1: Signature generation

Hash function

Hash

Verified if equals

PDFPDF

16b42101cc9bd2a3863c533d81f1c764d165bc5b

16b42101cc9bd2a3863c533d81f1c764d165bc5b

PUBLIC

Figure 1.2: Signature verification

6

1.2. Public Key Infrastructure

1.2 Public Key Infrastructure

The Public Key Infrastructure (PKI) is an entire complex system intended to
make secure communication possible in an untrustworthy environment with-
out previous interaction (exchange of keys, etc.). The price for this is that
both parties have to trust some other body, typically called the Certification
Authority (CA). The CA is responsible for verifying end-user identities and
for issuing and revocation of certificates.

The certificate is composed of the public key and identification of the
holder, serial number, dates of creation and expiry, and other information –
all digitally signed with the issuer’s private key. The important point is that
it has no knowledge of holder’s private key. The verification is performed
using the certificate of the issuer which contains the public key. In real world
applications, the CA usually does not sign the end-user certificate directly,
because in case the private key is compromised, all the issued certificates can
no longer be trusted. Typically, one or more intermediate CAs are set up that
create the chain of trust leading to the root CA (with a certificate signed by
itself). Its private key is used quite seldom and can be securely stored (e.g.
on a hardware security module stored at a very safe place). The verification
has to follow the whole chain up to the commonly agreed root CA. Consulting
the CRL (Certificate Revocation List) or using other means like the OCSP
protocol to check for revoked certificates should be an integral part of the
process. [8]

1.3 Security aspects

The certificate storage is a place used for saving trusted root CA certificates.
Typically, there is a certificate storage provided by the operating system (Win-
dows, Linux, etc.) for other applications. Nevertheless, some applications
come with their own storages (e.g. Firefox web browser). In order to simplify
the initial setup for users who do not know anything about PKI, the storage
is usually pre-filled with trusted CA certificates. This approach greatly sim-
plifies the initial setup (or avoids it completely) and, for example, allows the
user to start web browsing with HTTPS immediately. The set of trusted root
authorities is kept up-to-date together with the other parts of the operating
system or the application. The disadvantage is that someone else decides for
the user whom does the user trust and whom not, regardless of their opin-
ion. We have already seen cases of commonly trusted CAs losing their credit
because of severe security flaws in the past. [9]

1.3.1 Symantec CA

Cases of CAs that finally had to be removed from trusted stores include Digi-
Notar or StartCom/WoSign. However, the most recent affair at the time of

7

1. Digital signatures

writing also known to the general public concerns the Symantec CA. The list
of some of its known wrongdoings:

• issuance of RSA 1024-bit certificate expiring after deadline

• unauthorized EV (Extended Validation Certificate) issuance by RAs
(Registration Authority)

• test certificate misissuance – for unregistered domains or domains owned
by someone else

• domain validation vulnerability – in some cases an attacker could obtain
certificate to somebody else’s domain

• numerous violations found during the 2015 audit

• SHA-1 issuance after the deadline

• unallowed cross-signing with other CA

• UniCredit sub CA failing to follow BRs (Baseline Requirements)

• audit reports (required by BR) regularly issued late

• CrossCert misissuances

• GeoRoot program audit issues

For more information see [10]. In response to these issues, the major web
browsers decided to remove a trust for Symantec. The first step is distrusting
the certificates issued before June 1, 2016. In Google Chrome, this will be
done in version 66 (April 2018) and in Mozilla Firefox with a version 60 (May
2018). The second step is to remove the trust completely. This Symantec cut-
off will be done in Chrome with a version 70 (October 2018) and in Firefox
with a version 63 (October 2018). [10, 11]

Finally, it should be noted that the whole business of the Symantec CA
was taken over by DigiCert, Inc., completely reviewed, redesigned and made
subject to their own strict regulations. This made it possible for the trade-
mark Symantec to live on, but the security processes behind it are completely
new. [12]

1.3.2 Revocation

Another problematic part is a revocation of issued certificates. There are many
reasons to revoke an issued certificate, ranging from technical problems like
compromising the private key to standard procedures, e.g. when an employee
is leaving a company. The information of revocation needs to be distributed
to all subjects that could be possibly verifying the specific certificate (mostly

8

1.3. Security aspects

this means the whole world). There are a few approaches to achieve this and
none of them is fundamentally better than the other:

CRL (Certificate Revocation List) – a list of all revoked cer-
tificates published by the CA. The main problems are the big size of the
list for great CAs, possible delay between the revocation and publishing
the updated list, because lists are cached and updated periodically, and
unavailability of the list due to network problems or Denial of Service
attacks.

OCSP (Online Certificate Status Protocol) – an alternative
to the CRL with an advantage of cutting down requirements for the
network bandwidth, client resources and the delay from the act of revo-
cation to its availability to consumers. The client requests the revocation
status at the OCSP responder (a server published in the certificate) and
that responds to a certificate with a reply of good, revoked, or unknown.
The drawback is that OCSP is even more prone to network problems as
it requests the status each time, not just doing periodic sync as is the
case with the CRL. It is not resistant to MitM (Man in the Middle) and
replay attacks.

OCSP-Stapling is another approach supported by major browsers and
ideally shall be enforced by OCSP Must-Staple flag to prevent the MitM
attack. This moves the step of consulting the OCSP responder from the
client to the server which staples the signed response in the handshake
with the client. [13, 14, 15]

Another step to hardening current PKI infrastructure is a technology called
the Certificate Transparency (CT) that should allow much faster detection
of any bad behaviour. This system consists of three parts – logs, monitors, and
auditors. The main idea is that there are some logs with all the certificates
issued by publicly trusted CAs. They allow anybody to find a malicious
certificate or detect the CA with unfair practices. The public logs use the
Merkle hash tree data structure and allow only appending new records. The
addition can be done by anybody, same as querying for log records to verify log
correct behaviour, or that the specific certificate is present. The monitors are
publicly run servers that watch over the logs. They perform periodic checks
and look for suspicious certificates. Finally, the auditors are verifying that
the logs are cryptographically consistent and also can verify that a particular
certificate is present in the log. Nowadays, the accepted policy for publicly
trusted CAs is to publish all the issued certificates in the CT logs. The auditor
part could be integrated directly into applications (like web browsers) to check
for the status of the certificate provided by the other peer. [16]

9

1. Digital signatures

Discovery of the asymmetric cryptography and the on-going research in
strong hash functions made it possible to securely and provably authenticate
the source of digital data. With the help of the digital certificates and the
whole PKI based on globally accepted and trusted CAs, we can effectively
use this authentication worldwide. However, despite the solid mathematical
grounds of the technology the real world environment brings new challenges,
often caused by an improper implementation, insufficient ease of use for the
general public and intentional or unintentional misuse for whatever reason.
Yet, the challenges are being addressed by professionals and the system is
being globally successfully used.

10

Chapter 2
Signatures in PDF

2.1 Portable Document Format

The Portable Document Format was developed by Adobe Systems; version 1.0
was published in 1993. Growing popularity of the originally proprietary for-
mat led to ISO standardization in 2008 (PDF 1.7 as ISO 32000-1) and 2017
(PDF 2.0 as ISO 32000-2).

Now, let us have a look at the PDF file structure.2 The file consists of
various objects spread across the file referenced by offsets. The reader can
effectively use random access to the required data which can significantly im-
prove performance, especially in case of big files. On the other hand, there
is a different challenge when using PDF files in a network environment (In-
ternet) – the need to present a part of the information even before the whole
contents has been downloaded. A special kind of PDF files (linearized PDF)
can be used to an advantage in such situations. There, the objects are placed
sequentially within the file, which allows for on-the-fly processing. [17, An-
nex F]

There is a one-line header with a PDF version at the beginning of the
document. It starts with characters %PDF- followed by version numbers (major
and minor) separated with a dot. At the moment versions 1.0 to 1.7 and 2.0
are applicable. For example, the header can contain %PDF-1.7 or %PDF-2.0.
[17, Section 7.5.2]

The header is followed by a file body, composed of a sequence of indirect
objects. Inside the body, there is the actual content of the document. [17,
Section 7.5.3]

The PDF standard [17, Section 7.3] defines eight basic types of objects:

Boolean
Values true or false representing a logical value.

2Here we assume PDF files with a cross-reference section only. There is also a variant
called a cross-reference stream not considered here for the sake of simplicity.

11

2. Signatures in PDF

Numeric
Integers or real numbers, e.g., 789, -4.56.

String
Literal strings are enclosed in brackets. Only 8-bit character values may
appear inside this data type. Example of a literal string: (text).
Hexadecimal strings are enclosed in angle brackets and shall contain
only hexadecimal characters. This is useful for including binary data.
Example of a hexadecimal string: <3ca5f81147>.

Name
A unique sequence of 8-bit characters starting with a slash (/). The
slash is not a part of the name. Example: /SigFlags.

Array
A heterogenous one-dimensional collection enclosed in square brackets –
[. . .]. For example: [/Name (John) false 32].

Dictionary
An associative table containing pairs of key and value. The key shall be
a name object. Example: <</Size 9 /Lang (en)>>.

Stream
A stream begins with a dictionary containing information about the
stream such as compression method. The stream data are enclosed in
keywords stream and endstream. Example:

<</Type /XObject /Subtype /Image /Width 52 ... >>
stream
a75c838855b331c4...
endstream

Null
The keyword used for a null object (a way to tell there is nothing here)
is null.

The cross-reference table is an important part that permits random access
to objects inside the file. The table starts with a keyword xref followed by
two numbers. The first number stands for the first object in the subsection
and the other equals the count of entries in the subsection. The cross-reference
table can have one or more subsections. For each additional subsection there
are those two numbers followed by 20-byte entries, one per line. The exact
format is oooooooooo ggggg n eof. The first ten digit number (ten times o)
is the byte offset in the decoded stream from the beginning of the file. The

12

2.1. Portable Document Format

second number (five times g) is the generation number of the object. The
single n is the flag meaning in use entry. The other possible value of the flag
is f meaning free entry. [17, Section 7.5.4]

An example of cross-reference table with two subsections:

xref
0 2 % subsection beginning at object 0 and containing

% two entries
0000000000 65535 f % first entry is always free with generation number

% 65535
0000001325 00000 n % object number 1, offset 1325, generation number 0,

% in use entry
14 1 % beginning of another subsection starting at the

% object 14 and containing one entry
0000002518 00001 n % object number 14, offset 2518, generation number

% 1, in use entry

Finally, before the end, there is a file trailer which is used to quickly find
an offset of the cross-reference table and some other useful information. It
begins with a keyword trailer followed by a direct dictionary object. After
that, there are the last three lines of the file: keyword startxref, a number
specifying the byte offset in the decoded stream of last cross reference section
from the beginning of the file and %%EOF meaning the very end of the file. [17,
Section 7.5.5]

Example of a file trailer:

trailer
<</Size 11 /Root 10 0 R /Info 8 0 R
/ID[<77fa14e5e882571aeb5fd2f92d2ea001><77fa1...>]>>
startxref
12051
%%EOF

An illustration of the layout of individual parts mentioned above inside of
PDF document is in Figure 2.1.

2.1.1 Incremental updates

When updating a PDF document incrementally, the changes should be ap-
pended to the end of the file. This update style leaves the original content
untouched, only new data appear at the end along with a new trailer and
cross-reference section. This is advantageous in the field of digital signatures,
where the hash computed over the specified byte range preserves its value.
[17, Section 7.5.6]

The illustration of incremental update can be seen in the Figure 2.2.

13

2. Signatures in PDF

%PDF-1.7header

body

xref

trailer

5 0 obj
% data of object 5
endobj
1 0 obj
% data of object 1
endobj

xref
0 2
0000000000 65535 f
...

trailer
<<...>>
startxref
60119
%%EOF

Figure 2.1: PDF file structure

2.2 Signature in PDF

According to the PDF standard [17, Section 12.8.1]:

“Digital signatures in PDF support four activities:

• the addition of a digital signature to a document,
• the verification of the validity of a signature added to a doc-

ument,
• the addition of DSS3 dictionaries and of validation related in-

formation (VRI) to allow for later verifications (see 12.8.4.4,
“Validation-related information (VRI)”), and

• the addition of document timestamp dictionaries (DTS) to al-
low for later verifications (see 12.8.5, “Document timestamp
(DTS) dictionary”).”

The second activity (the verification of the signature validity) is the primary
focus of this thesis.

If the signature is present in the file, the signature information is stored
in a signature dictionary. Creating multiple digital signatures for a PDF file
is possible. The PDF standard [17, Section 12.8.1] allows for these types of
signatures:

3Document Security Store

14

2.2. Signature in PDF

%PDF-1.7header

body

xref

trailer

5 0 obj
% data of object 5
endobj
1 0 obj
% data of object 1
endobj

xref
0 2
0000000000 65535 f
...

trailer
<<...>>
startxref
60119
%%EOF

body
update

5 1 obj
% updated data of object 5
endobj

xref % updated xref

trailer
<<...>>
startxref
62483 % offset to updated xref
%%EOF

trailer

Figure 2.2: PDF incremental update

15

2. Signatures in PDF

Certification signature

is applied by the author of the document and besides the proof of au-
thorship provides an instrument for defining restrictions for later modi-
fication of the document. Only one signature of this type is allowed.

Approval signature

is usually applied after the certification signature by the recipients, typi-
cally expressing agreement with the contents. More of them are allowed.

Timestamp signature

provides reliable information about the time of signing. It may also be
used to extend the time when it is possible to verify some previously
applied signature. There may be any number of timestamp signatures
applied to the document.

Usage rights signature

allows setting rights for the manipulation with specific parts of the docu-
ments, such as modification of annotations or forms. Only one signature
of this type is permitted, and it shall be the first signature if used. The
usage rights signature is deprecated in PDF version 2.0.

Three of these signatures, the certification, approval, and timestamp are
placed in the signature dictionary together with the ByteRange entry. The
last one, the usage rights signature, is referenced from the UR3 entry in the
permissions dictionary. [17, Section 12.8.1]

Some types of PDF documents may evolve during their life-cycle: form
fields may be filled-in, annotations added, etc. The original author may define
which changes are permitted without invalidating the signature. This is done
by adding the transform method to the signature dictionary (more later in
section 2.3). These define permissions for later document modifications. The
certification signature shall have the DocMDP transform method or also the
FieldMDP is possible. The approval signature may have only the FieldMDP
transform method. And finally, the usage rights signature always has the UR
transform method. [17, Section 12.8.2]

The signature dictionary contains two important entries for determining of
how to manipulate with the signature. The first one is Filter with the value
of the preferred signature handler. The value may not necessarily match with
the signature handler used. The other entry – SubFilter – exactly identifies
the signing procedure and allows for a signature handler interoperability. In
case it is missing, only the corresponding signature handler can be used. The
value of SubFilter is the exact identification of the signature used. [17,
Section 12.8.3.1]

16

2.2. Signature in PDF

Table 2.1: PKCS#1 signature properties

SubFilter adbe.x509.rsa sha1

Message Digest

SHA-1
SHA-256
SHA-384
SHA-512
RIPEMD160

RSA up to 4096-bit

2.2.1 PKCS#1

The Public-Key Cryptographic Standard #1 [18], besides other things (mainly
RSA cryptography algorithm), defines the signature based on RSA. The only
allowed PKCS#1 signature type in PDF is with the SubFilter value adbe.-
x509.rsa sha1 (see Table 2.1 for details). This value has been deprecated in
PDF version 2.0. It means that PDF writers are discouraged from using it, but
PDF readers should process it for backward compatibility. [17, Section 12.8.3]

Important entries in the signature dictionary used with the PKCS#1 sig-
nature are listed here:

Type (name, optional); value Sig

SubFilter (name, optional); value adbe.x509.rsa sha1

Contents (byte string, required); DER-encoded PKCS#1 binary data
object containing the signature value

Cert (array/byte string, required); an array of byte strings, or just
a byte string if the chain contains only one certificate; X.509 certificate
chain, where the first one is the signing certificate

ByteRange (array, required); an array of pairs of integers, each item
holding starting offset and length in bytes [17, Section 12.8.1]

2.2.2 PKCS#7 (CMS)

All defined SubFilter values using the Public-Key Cryptographic Stand-
ard #7 (Cryptographic Message Syntax) [19] together with other proper-
ties can be found in Table 2.2. The signature with SubFilter identification
adbe.pkcs7.sha1 has been deprecated in PDF version 2.0. The Contents en-
try in the signature dictionary is the DER-encoded CMS binary data object.
The signer’s certificate is not stored in the Cert entry as is the case with

17

2. Signatures in PDF

Table 2.2: PKCS#7 signature properties

SubFilter
adbe.pkcs7.detached
ETSI.CAdES.detached
ETSI.RFC3161

adbe.pkcs7.sha1

Message Digest

SHA-1
SHA-256
SHA-384
SHA-512
RIPEMD160

SHA-1
SHA-256
SHA-384
SHA-512
RIPEMD160

RSA up to 4096-bit up to 4096-bit

DSA up to 4096-bit up to 4096-bit

ECDSA
ANSI X9.62, Elliptic
Curve Digital Signature
Algorithm

No

adbe.x509.rsa sha1, but it is included directly in the CMS object itself. [17,
Section 12.8.3.3]

The CMS object should contain:

• signer’s X.509 certificate together with the full chain; if the chain can-
not be added at the time of signing, it may be attached later as an
incremental update to the Document Security Store (DSS)

• timestamp information (unsigned)

• revocation information (signed)

• one or more attribute certificates [17, Section 12.8.3.3]

The signatures with the SubFilter value of ETSI.CAdES.detached are
referred to as PAdES (PDF Advanced Electronic Signatures) and are useful
for long-term validation. They use one of the two CMS profiles compatible
with CAdES (CMS Advanced Electronic Signatures), either PAdES-E-BES
(Basic Electronic Signature) or PAdES-E-EPES (Explicit Policy Electronic
Signature). These profiles correspond to those defined in ETSI EN 319 122-2
(CAdES-E-BES and CAdES-E-EPES). [17, Section 12.8.3.4]

To validate a PAdES signature, one is supposed to complete the following
steps:

18

2.3. Transform methods

1. Compare the hash value of the signer’s certificate with the hash value
in the signing-certificate or signing-certificate-v2 attribute and in case
of the match, verify that the document digest is correctly signed using
the public key from signer’s certificate.

2. Validate the certification path according to RFC 5280 clause 6; if the
signature handler knows for sure all the validation information existed
at some point in the past, that time shall be used; otherwise, the handler
has to use the current time

3. Validate the path of the certificate used for the timestamp according to
RFC 5280 clause 6

4. Perform revocation checks of the certification path [17, Section 12.8.3.4]

2.3 Transform methods

Transform methods are techniques that allow some specified changes to the
document without invalidating the signature. These changes could be filling-in
forms (all, or just some), or adding annotations. The first step of verification
is again the comparison of the hash. Then the signature handler has to take
into account all the incremental updates to the document and for each change
between the signed and recent version check whether it is allowed. [17, Sec-
tion 12.8.2]

2.3.1 DocMDP

The DocMDP transform method [17, Section 12.8.2.2] allows to specify changes
that are permitted and changes that are forbidden in the document. The
DocMDP can be used only with the certification signature. If applied, the value
of TransformMethod in the signature reference dictionary is DocMDP (name
object), and value (optional) of TransformParams is DocMDP transform pa-
rameters dictionary. Possible entries in this dictionary:

Type (name, optional); the value is TransformParams

P (number, optional); access permissions for the document; possible
values:

1 no changes are permitted, any changes invalidate the signature
2 permitted only filling in forms, instantiating page templates, and

signing (default value)
3 in addition to 2, permitted changes are annotation creation/dele-

tion/modification

V (name, optional); the version of this dictionary; currently the only
valid value is 1.2 (also the default value)

19

2. Signatures in PDF

2.3.2 UR

The UR transform method [17, Section 12.8.2.3] is used with the usage right
signature and together with the signature type it has been deprecated in PDF
version 2.0. In order to verify a document with this transform method applied,
the signature handler should first verify the byte range digest. The next step
is to examine the current version of the document for any disallowed changes
since the signature was applied. Value of the TransformParams is the UR
transform parameters dictionary. Possible entries in this dictionary:

Type (name, optional); the value is TransformParams

Document (array, optional); an array of names; the only defined value
is FullSave that permits to save the document; usage rights that permit
modification of the document implies FullSave

Msg (string, optional); text with additional information, such as
the reason for adding usage rights (UR)

V (name, optional); the version of this dictionary; currently the
only valid value is 2.2 (also the default value, if not specified)

Annots (array, optional); an array of names specifying additional
rights on the annotations; possible values: Create, Delete, Modify, Copy,
Import, Export, Online, Summary View

Form (array, optional); an array of names with additional permis-
sions for form fields. Possible values:

Add add form field

Delete delete form field

FillIn fill-in form and save

Import import form data in FDF, XFDF, or text (CSV/TSV)
format

Export export form data to FDF, XFDF

SubmitStandalone submit form data without being open in Web browser

SpawnTemplate instantiation of new pages from templates

BarcodePlaintext encode form data to barcode

Online SOAP or Active Data Object

Signature (array, optional); an array of names; currently the only de-
fined name is Modify that permits the addition of a new signature to an
existing signature form field and also erasing signed signature form field

20

2.3. Transform methods

EF (array, optional); an array of names; usage rights for named
embedded files; possible values: Create, Delete, Modify, Import

P (boolean, optional); true means restrictions are valid; false
(default value) means all restrictions are ignored

2.3.3 FieldMDP

The FieldMDP transform method [17, Section 12.8.2.4] detects changes in the
values of a list of form fields. Value of the TransformParams is the FieldMDP
transform parameters dictionary. Possible entries in this dictionary:

Type (name, optional); the value is TransformParams

Action (name, required); together with Fields entry specifies which form
fields invalidate signature if changes are made to them

All no changes allowed to any of the form fields
Include changes are not allowed only for the form fields specified in

the Fields entry
Exclude changes are allowed only for the form fields specified in Fields

entry

Fields (array, required if Action is Include or Exclude); text strings
containing field names

V (name, optional); the version of this dictionary; currently the only
valid value is 1.2 (also the default value)

Several years of service and hundreds of millions of documents in circu-
lation prove the PDF to be an exceptionally successful standard for storing
the electronic documents. The possibility to use the digital signatures is cer-
tainly not the least important among the numerous features it provides. The
standard continuously evolves and provides new features with respect to the
advancements in modern cryptography and security practices. One can sign
the whole document or its parts only, control the accepted contents process-
ing (filling in forms, making additions, annotations, etc.) in detail, follow the
document evolution in time and much more.

21

Chapter 3
Signature support in

applications

Although completely platform independent by design, there is little doubt
the operating systems from Microsoft, either MS-DOS in the beginning or
different versions of Microsoft Windows later on, were the primary target of
PDF documents. That is not surprising, because it was and still is by far the
most widespread operating system for desktop computers at home as well as in
the commercial environment. The two applications from the Adobe Systems,
Acrobat for the document creation and editing and free Acrobat Reader for
reading them, became de facto reference implementations of such programs
and helped significantly to the success of the PDF itself. Other operating
systems, namely macOS and Linux, hold only a small portion of the desktop
market but they still do have their use-cases and their importance. However,
one can notice a gradual move towards using mobile solutions of different
kinds (tablets, smartphones) and recently even growing popularity of on-line
services also for handling the PDF documents.

In the Linux world, where both the kernel and the applications are devel-
oped in a rare symbiosis of the commercial sector and independent community
(see e.g. [20]), the right and liberty to choose has always been considered a
precious value. So it is no wonder one can find numerous applications to view
a PDF file in Linux ranging from very popular and well-known applications
such as Evince or Okular to those being used by a small community only.
Generally speaking, their handling the digital signatures is not complete or
is missing entirely.4 The reason seems obvious: the full coverage of all the
subtle niches is far from trivial and the demand for the feature from users is

4One should pay some attention not to confuse adding the electronic signature and the
digital signature to the document. The former term (often in the form e-signature) stands
for adding a graphical representation of the hand-written signature of the author/reviewer to
the document, usually in the form of a scanned image; the latter means real authentication
of the document contents based on cryptography techniques.

23

3. Signature support in applications

Table 3.1: PDF viewers under Linux

Program Open Source Free Digital
Signature Note

Evince 3 3 7 [23]
Foxit PhantomPDF 7 7 3 [24]
Foxit Reader5 7 3 3 [24]
Ghostscript 3 3 7 [25]
KPDF 3 3 7 [26]
Master PDF Editor Commercial 7 7 3 [27]
Multivalent 3 3 7 [28]
Okular 3 3 7 [29]
PDF.js 3 3 7 [30]
PDF Studio Pro 7 7 3 [31]
qpdfview 3 3 7 [32]
Xpdf 3 3 7 [33]
Zathura 3 3 7 [34]

not too large [21]. Fortunately enough, there are examples of the contrary, but
mostly in a closed source paid software. The LibreOffice project, a popular
multi-platform general purpose home and office document handling software,
is one of the quite rare notable exceptions in an open source world that can
correctly handle both signing of PDF files and verifying their digital signatures
[22]. Table 3.1 provides a summary of popular PDF viewers. The list tries
to be more representative than exhaustive. The Adobe Systems discontinued
the development of Acrobat/Acrobat Reader for the Linux platform in 2013.

There are also some other tools that make work with digital signatures in
Linux possible. Many of them are written in Java. Even if they were primar-
ily developed for other operating systems (mainly Microsoft Windows) they
work well in Linux due to the multi-platform nature of Java, provided that
they do not rely on platform-specific features6. Quite often this is acceptable,
but sometimes the inter-operability problems, unavailability of Java runtime,
higher system resources consumption or not completely seamless system in-
tegration may prove to be an issue. The Java virtual machine is a rather
complex piece of software with security issues of its own which is also a point
to consider. One can arrive at a very similar conclusion when running a na-
tive Microsoft Windows application under Linux using the Wine compatibility
layer. Undoubtedly, the true native Linux solution would be indispensable in
many situations and environments. Popular tools (except PDF viewers) ca-

5non-commercial use only
6for example system calls

24

Table 3.2: PDF signature related software

Program Open
Source Free Note

CAcert PDF Signer 3 3 command line Java application [35]

DigiSigner 7 7
commercial GUI application with
limited free use [36]

iText 3 3
PDF library for Java and .NET en-
vironment [37]

jPdfSign 3 3 command line Java application [38]
jSignPdf 3 3 discontinued Java application [39]

LibreOffice 3 3
home and office document handling
software [22]

OpenSignPDF 3 3 Java application [40]
PDFBox 3 3 Java library [41]

Poppler 3 3
PDF rendering library slowly get-
ting digital signature support [42]

Portable Signer 3 3 GUI application written in Java [43]

pable of working with PDF signatures in Linux are listed in Table 3.2.
The overview provided here suggests that the possibilities of working with

digital signatures in PDF files in Linux environment are somewhat limited,
especially when running Java is not an option for whatever reason.

The expectations that the situation might rapidly improve with the im-
plementation of digital signature features in Poppler still wait for fulfillment.
Poppler is a general purpose PDF rendering library that is used by many
projects, Evince, Okular, LibreOffice, and Zathura being among them. The
progress is relatively slow and in spite of about a decade of work, it still has
not reached the desired state [21].

The current Internet is even able to offer online services for the verification
of the digital signatures in PDF documents, the Secured Signing company
from New Zealand being an example [44]. When accessed with a standard
web browser they are platform independent from their nature. Typically,
they provide only a limited (if any) free access. Before using them, one should
thoroughly consider the fact that uploading the documents for verification
may result in sharing private and possibly restricted information with some
other subject which makes it potentially dangerous. Document treatment of
this kind may even violate legal regulations like the General Data Protection
Regulation in the European Union.

25

Chapter 4
Implementation

In order to demonstrate the process of verifying the digital signature of a
PDF document in practice and possibly to provide a little contribution to im-
prove the above described somewhat bleak situation, we decided to develop a
lightweight library with limited external dependencies (beside standard run-
time libraries always present in the operating system not more than a cryp-
tographic library). The new library should be able to verify the basic type of
signature – PKCS#1. Further extensions of its capabilities are possible, how-
ever, due to the rapidly increasing complexity of the PDF document processing
remain outside the scope of the presented work. It was explained in chapter 2
that comprehensive PDF structure awareness and custom file parsing would
be required.

4.1 Design and preliminaries

It was necessary to make several decisions on technologies and tools used in
the development in the beginning.

The form of a library was selected as a final result because it appears to
be both the most lightweight and the most flexible solution which allows for
a complete separation of the digital signature processing from a user interface
of any kind. The library is generated in the form of a shared object (.so)
which can be used by an application directly during the link/load-time or be
loaded dynamically during the run-time. It also allows for simple versioning
of the library.

The C language seems to be the most natural choice for writing a library
for common use. The C compiler is readily available for all targets one can
imagine (at least in the form of a cross-compiler in case of embedded systems).
The resulting code has a small memory footprint, it is fast, efficient and pos-
sibilities of interfacing to it from other languages are practically endless. The
advantages of higher-level programming languages like Java, Go, or C# would
not out-weight the mentioned features in a project of this scale.

27

4. Implementation

The library for the verification of digital signatures needs to perform some
cryptographic operations. Namely, the asymmetric cryptography (for decryp-
tion of the signature) and a few popular hash functions need to be supported.
Using a well-tested code with a long-term credit is the only reasonable option
for a subtle subject which the cryptography surely is, which is why an external
cryptographic library is used to perform these operations. The considered op-
tions were the ones most popular with the Linux OS – BoringSSL, GnuTLS,
NSS, OpenSSL, and mbedTLS. Eventually, we chose OpenSSL; however, it is
still possible to adapt the code for a different library later with little efforts.

The whole system of PKI is based on the concept of trusted root CAs.
The library will have no pre-set trusted root anchors by default which gives
the user full flexibility and detailed control of the verification process. The
two possibilities to define the trusted root CAs employed in the library will
be either using the trusted store provided by the operating system or defining
the custom set of root certificates. It is upon the user to choose the favorite
option, after taking into account things like regular updating, existence of the
private CA (e.g. for internal documents within a company), adherence to only
a few selected root CAs, and the like.

4.2 PDF-Sigil library (libpdfsigil)

The part sigil in the library name is derived from the Latin word sigillum,
which means seal or stamp, i.e. something that has been used to prove the
origin of the document, product, etc. for centuries.

The compiled library consists of a single file libpdfsigil.so and directly
depends on the standard C library and the OpenSSL cryptographic library,
only. It does not require any sort of initial setup (by means of the configuration
file, calling a dedicated function or similar). The code of the library is entirely
written in a plain C language. The compilation should be possible with an
arbitrary ANSI C compliant compiler; there are no special requirements for
amendments made in the latest versions of the C standard. We used the GNU
Compiler Collection (GCC), and CMake build system.

The public interface consists of several functions plus some type and con-
stant definitions, all provided by the header files (sigil.h for publicly ex-
ported functions, types.h for structure definitions and constants.h for defi-
nitions of various parameters and return codes). The process of verification of
a digital signature in a PDF document is performed as a sequence of calls to
the library functions which update the internal context of the type sigil t,
the structure that keeps track of defined parameters and results of previous
steps during processing. Typically, the verification procedure follows these
steps:

28

4.3. Command-line tool

1. Initialization The call to sigil init prepares the context for all
subsequent operations.

2. Data input Providing the input data (i.e. the PDF document for
the signature verification) can be done with the call to sigil set pdf -
path (the document is referenced by its pathname within the mounted
filesystem), sigil set pdf file (the parameter is a valid file descrip-
tor), or sigil set pdf buffer (the document contents is passed as a
memory buffer).

3. Trusted roots Setting the CAs that should be trusted is another es-
sential step as there are no such items defined by default. It can be done
with the help of pdf set trusted system which will use all CAs in the
operating system trusted store or alternatively by providing a custom
set of trusted root certificates - sigil set trusted file for a single
root anchor and sigil set trusted dir for all certificates available in
the specified directory.

4. Verification The verification process is started with the call to the
function sigil verify.

5. Results Once the verification is carried out the results can be ac-
cessed using sigil get result. However, there are also other functions
providing more detailed information. They may be useful especially in
case of the verification failure.

6. Clean-up The final step in the sequence is done by the function
sigil free which makes sure all the allocated resources are properly
freed.

In order to perform the verification of another PDF document, one should
repeat all the described steps from initialization up to clean-up.

All the aforementioned functions indicate possible errors as their return
value – sigil err t is a numerical type, possible values can be found in the
header file. Using the predefined constants in the application source code
makes it self-explanatory and well understandable. ERR NONE which evaluates
to 0 means the required operation was finished successfully; any other value
means the failure of some kind. Using the function sigil err string is a
straightforward way to obtain a text description of the error. More details
about the error codes, function parameters, and function usage can be found
in the documentation.

4.3 Command-line tool (pdf-sigil)

In order to demonstrate the use of the library, a command-line tool named
pdf-sigil was developed.

29

4. Implementation

When running the pdf-sigil command with a -h or --help argument,
it prints the usage help. The PDF file for the verification is provided after
the -f (--file) argument. Trusted root CAs need to be set in order to
verify the signing certificate. This tool provides the same options for setting
the trusted storage as the library – arguments -ts (--trusted-system) for
using the storage provided by the operating system, -tf (--trusted-file)
for setting the trusted certificate inside of a file, and -td (--trusted-dir) for
all certificates inside the directory.

By default, the program prints the overall verification status together with
a few additional pieces of information – SubFilter value, the hash function
used, and intermediate verification results. This output can be extended
with detailed information about the signing certificate with an argument -ci
(--cert-info).

The return value is set according to the overall verification status: 0 for
successful verification, 1 in all other cases regardless of the reason for failure.
If no more than the return value is important (typically when used within shell
scripts) the output can be suppressed entirely with an argument -q (--quiet).
Appendix B provides a few example outputs created by the tool.

4.4 Results

The PDF-Sigil library was developed as a part of the presented thesis, making
it possible to verify digital signatures in PDF documents. The library brings
one external dependency only (OpenSSL for cryptographic operations) and
is capable of verification of the certification signatures of the PKCS#1 type.
PDF-Sigil has no trusted CAs pre-configured; the user is given full control
over the trusted roots (either use the operating system-wide trusted store or
provide the own set of trusted root certificates).

Testing PDF documents of various size and structure were provided with
the certification signature. We used a free personal certificate from Comodo
(dedicated primarily to the e-mail encryption and signing using S/MIME).7
It is a 2048-bit RSA certificate with an SHA-256 certificate signature which
expires in one year. The chain of trust goes through the intermediate COMODO
RSA Client Authentication and Secure Email CA and is anchored in the
globally accepted root COMODO RSA Certification Authority. Some docu-
ments were subsequently changed which yielded a document digest mismatch.
Results of our tests were compared to the signature verification performed by
Acrobat Reader DC 2018 running on Microsoft Windows 10 where the required
trust anchors were configured. Some tests were carried out in an environment
with the shifted system time (beyond the signer’s certificate validity period).
The document validation status obtained from the pdf-sigil command-line

7https://www.comodo.com/home/email-security/free-email-certificate.php

30

https://www.comodo.com/home/email-security/free-email-certificate.php

4.5. Security

utility completely agreed with our expectations and exactly matched with the
reference tool in all cases.

It was discovered during the tests that LibreOffice – free open-source soft-
ware previously declared as capable of full-featured digital signature handling –
cannot verify the PKCS#1 type of signature and claims “This document has
an invalid signature”. As described in the section 2.2.1 this type is still valid
(although deprecated in PDF 2.0 and with declining usage) and Adobe Reader
DC declared exactly the same documents as properly signed.

We explained in the section 1.3.2 that the signer’s certificate revocation
check is an important part of the whole digital signature validation process.
However, this has not been implemented in PDF-Sigil yet. The library is
nearly ready to verify the certificate using the CRL once this list is made
available. The root CAs usually update their revocation list once a week;
consequently, the most appropriate attitude seems to have a separate service
responsible for handling the CRLs, including regular downloads of the updates
with verifying their integrity and storage. Employing the OCSP or CT log
auditing properly is a challenging task of its own and details of handling them
differ even among the major web browsers.

Chapter 2 showed there are rich possibilities with digital signatures in PDF
documents. The developed library implements validation of the very basic
signature type only and should be understood more as a first step than a full-
featured tool. The revocation checks mentioned above and handling PKCS#7
signatures should be the next development goals. Complete coverage of the
approval signatures and transform methods will require full document parsing
which may become quite complex and complicated work. Here, one might
re-consider some of the original design decisions. The task might be solved
more easily with the help of some document parsing library. Using modern
C++ with its standard containers, smart pointers and move semantics might
better keep the source code clean, understandable and secure while keeping
the simple interface and good performance.

4.5 Security

The security of any application can be evaluated from various perspective – we
may call the points of view for example the theoretical grounds, the hardware
and software environment and the application security.

All the applications that have some relation to security use some pro-
cedures and techniques based on the research in the cryptography, algebra,
number theory and other related scientific subjects. Their security, recom-
mended practice in usage, weakness evaluation, etc. are being thoroughly
studied by hundreds of professionals all around the world and one can do no
better than to listen to their opinion and follow their recommendations. Self-
made solutions and amateur “improvements” most usually lead to security

31

4. Implementation

by obscurity or serious security flaws. The field is far from being rigid; the
evolution is underway all the time. See for example the deprecation of the
SHA-1 hash function and finding the first real hash collision not so far ago.

Computer programs “live” in some environment, they are run on some
hardware, use some non-volatile storage, depend on the installed operating
system, running services, third-party libraries, many a time on network pro-
tocols and services as well as routers, switches and other network elements and
the like. Taking this part of security seriously means to carry out a proper sys-
tem and network administration including regular software updates, setting
up and keeping strict security policies (including even things like restricted
physical access to devices). The hardware vulnerabilities should not be un-
derestimated as well, the recent Spectre/Meltdown affair serves as an excellent
example.

Finally, the application itself should be designed to minimize any potential
of leaking the sensitive data and to take all available counter-measures against
any malicious activity affecting the security. Developers with enough experi-
ence, good coding style, continual testing on different levels, independent code
reviews or audits are possible remedies that allow reducing eventual security
vulnerabilities (and other problems as well). The application should be ac-
quired from reliable sources (either in the form of binaries or source codes), its
integrity validated and should be installed appropriately. This includes right
configuration, setting up user access rights, updating dependencies, etc. Reg-
ular maintenance is a must and thorough monitoring may reveal issues even
before they become a problem. However, there is a big difference between
an essential information system in a corporate environment and a common
application for home users.

From the specific point of view of the PDF-Sigil library one can think of two
main potential security issues, the first being possible exposure of the contents
of the verified PDF document and the other eventual incorrect evaluation of
the digital certificate validity (i.e. letting a valid signature fail or passing an
invalid signature as correct).

The PDF-Sigil library is written in the C language which is somewhat
prone to security problems like buffer overflows, memory over-reads, segmen-
tation faults, jump/call misplacements, etc. when not employed correctly.
The PDF document is stored within an internal buffer allocated on the process
heap during its processing. Efforts were exerted to perform all the allocations
and disposals properly; the buffer is even completely invalidated (rewritten
with garbage) before giving it back to the operating system in order to avoid
any chance of leaking data to other processes. The driving application should
follow the recommended sequence of steps and must not forget to call the
clean-up function in all situations. Special care was taken so that even the
maliciously crafted PDF document (e.g. with object offsets in the document
cross-reference table leading outside the valid range) would not confuse the
signature validation algorithm. Here, the infamous Heartbleed vulnerability

32

4.5. Security

in OpenSSL8 publicly disclosed in 2014 [45] and affecting millions of devices
is the lecture to learn from.

Even if we accept that the validation procedure of the digital signature
is implemented properly in the library, there are still some external factors
influencing the expected result. For certificate manipulations and message di-
gest computation, the library relies on the OpenSSL library which is usually
installed system-wide and should be kept up-to-date by the system admin-
istrator. The same responsibility concerns setting the current time (usually
regularly synchronized over the network with trusted time servers) which is
important for checking the certificate expiry. The key element in the PKI
are the trusted root anchors, i.e. the set of certificates of these root CAs.
The PDF-Sigil library may use the system storage, then again the admin-
istrator should maintain it according to local conditions (regular updates of
public CAs, custom policies with private CAs). As an alternative, the trusted
roots may be provided as files and the local security policies should define the
filesystem access rights (users with a right to modify the certificates vs. users
with the read-only access).

The functions exported from the library are expected to be called sequen-
tially. There is no built-in support to avoid the race conditions when using
the functions concurrently from several threads with the same context. The
behaviour in such circumstances is undefined and the risk of security conse-
quences is high. It is the responsibility of the calling application to make sure
that proper synchronization takes place in the multi-threaded environment.
There are, on the other hand, no hidden static variables in the library and the
function calls with different contexts do not mutually interfere (the internally
used OpenSSL functions are safe from this point of view). Apparently, the
main application is supposed not to modify the context in any way.

8The CVE-2014-0160 vulnerability nicknamed “Heartbleed” was a bug in the OpenSSL
implementation of the TLS transport protocol which allowed the attacker with a help of
the malformed keep-alive packet to access the memory even with very sensitive information
(private keys, passwords, etc.) without providing any credentials.

33

Conclusion

The first goal of this thesis was to study the current theory, recommenda-
tions and best practices of digital signatures. The chapter 1 along with the
chapter 2 contains the theoretical part and provides an explanation of digital
signatures in general, internal structure of PDF documents and all types of
digital signatures possible in PDF, as well as applicable transform methods.
The security aspects of signature verification are discussed as well.

The second goal of this thesis was to evaluate the current state of the art
in digital signatures of PDF documents in the Linux operating systems. This
is fulfilled in the chapter 3 containing a summary of PDF viewers running
in Linux and their capability to work with digital signatures. The research
revealed the majority of open-source applications is unable to handle digital
signatures. Another part of this research turned our attention to other tools
available and revealed that the libraries and applications with support for the
digital signatures are mostly confined to Java. However, if someone cannot
afford to run a Java environment for whatever reason, the situation can hardly
be considered satisfying.

The next goal was to write a C or C++ library for verification of digital
signatures in PDF together with a command line application demonstrating
the use of this library. The achievements of the author together with a short
documentation are described in the chapter 4. The PDF-Sigil library and the
command line application are a part of this thesis.

Due to the fact that verification of digital signatures in PDF is a quite
complicated matter, there is still plenty of space to improve this library. This
thesis provides a majority of information needed to understand the task as well
as the current state of implementation which allows for future enhancements
and extensions. The biggest challenge which the library faces is the need to
fully comprehend the PDF document structure in order to properly employ
transform methods used together with a digital signature.

Finally, the security aspects are thoroughly discussed both generally and
specifically for the developed library.

35

Bibliography

[1] Simner, M. L.; Leedham, C. G.; et al. Handwriting and Drawing Research:
Basic and Applied Issues. Amsterdam, Netherlands: IOS Press, 1996,
ISBN 978-90-5199-280-9.

[2] Hernández-Ardieta, L. Enhancing the Reliability of Digital Signatures as
Non-Repudiation Evidence under a Holistic Threat Model. Dissertation
thesis, University Carlos III of Madrid, Leganés, Feb. 2011. Available
from: https://e-archivo.uc3m.es/bitstream/handle/10016/11882/
Tesis Jorge Lopez Hernandez Ardieta.pdf [accessed 2018-04-15]

[3] National Institute of Standards and Technology. Digital Signature
Standard (DSS). NIST FIPS 186-4, Gaithersburg, July 2013, doi:10.
6028/NIST.FIPS.186-4. Available from: https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf [accessed 2018-03-25]

[4] Suzuki, K.; Tonien, D.; et al. Birthday Paradox for Multi-Collisions. In
Information Security and Cryptology – ICISC 2006, Springer, Berlin, Hei-
delberg, Nov. 2006, ISBN 978-3-540-49112-5 978-3-540-49114-9, pp. 29–
40, doi:10.1007/11927587 5. Available from: https://link.springer.
com/chapter/10.1007/11927587 5 [accessed 2018-04-02]

[5] National Institute of Standards and Technology. Secure Hash Standard.
NIST FIPS 180-4, Gaithersburg, July 2015, doi:10.6028/NIST.FIPS.
180-4. Available from: https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf [accessed 2018-03-25]

[6] Preneel, B.; Dobbertin, H.; et al. The Cryptographic Hash Function
RIPEMD-160. 1997. Available from: https://www.esat.kuleuven.be/
cosic/publications/article-317.pdf [accessed 2018-04-15]

37

https://e-archivo.uc3m.es/bitstream/handle/10016/11882/Tesis_Jorge_Lopez_Hernandez_Ardieta.pdf
https://e-archivo.uc3m.es/bitstream/handle/10016/11882/Tesis_Jorge_Lopez_Hernandez_Ardieta.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://link.springer.com/chapter/10.1007/11927587_5
https://link.springer.com/chapter/10.1007/11927587_5
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.esat.kuleuven.be/cosic/publications/article-317.pdf
https://www.esat.kuleuven.be/cosic/publications/article-317.pdf

Bibliography

[7] Stevens, M.; Bursztein, E.; et al. The First Collision for Full SHA-
1. In Advances in Cryptology – CRYPTO 2017, volume 10401, edited
by J. Katz; H. Shacham, Springer International Publishing, 2017,
ISBN 978-3-319-63687-0 978-3-319-63688-7, pp. 570–596, doi:10.1007/
978-3-319-63688-7 19. Available from: http://link.springer.com/10.
1007/978-3-319-63688-7 19 [accessed 2018-03-25]

[8] Adams, C.; Lloyd, S. Understanding PKI: Concepts, Standards, and De-
ployment Considerations. Second Edition, Addison-Wesley Professional,
2003, ISBN 978-0-672-32391-1.

[9] Perl, H.; Fahl, S.; et al. You Won’t Be Needing These Any More: On
Removing Unused Certificates from Trust Stores. In Financial Cryptog-
raphy and Data Security, edited by N. Christin; R. Safavi-Naini, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, ISBN 978-3-662-45472-5,
pp. 307–315.

[10] Mozilla Foundation. CA:Symantec Issues. Wiki Mozilla [online], re-
vision 2017-10-16. Available from: https://wiki.mozilla.org/CA:
Symantec Issues [accessed 2018-04-23]

[11] Google, Inc. Chrome’s Plan to Distrust Symantec Certificates. Security
Google Blog [online]. Available from: https://security.googleblog.
com/2017/09/chromes-plan-to-distrust-symantec.html [ac-
cessed 2018-04-23]

[12] DigiCert, Inc. DigiCert Completes Acquisition of Syman-
tec’s Website Security and Related PKI Solutions. DigiCert
[online]. Available from: https://www.digicert.com/news/
digicert-completes-acquisition-of-symantec-ssl [accessed 2018-
04-29]

[13] Cooper, D.; Santesson, S.; et al. Internet X.509 Public Key Infras-
tructure Certificate and Certificate Revocation List (CRL) Profile [on-
line]. Number 5280 in Request for Comments, May 2008, doi:10.
17487/RFC5280. Available from: https://www.rfc-editor.org/info/
rfc5280 [accessed 2018-04-24]

[14] Santesson, S.; Myers, M.; et al. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP [online]. Number 6960 in Re-
quest for Comments, June 2013, doi:10.17487/RFC6960. Available from:
https://www.rfc-editor.org/info/rfc6960 [accessed 2018-04-24]

[15] Hallam-Baker, P. X.509v3 Transport Layer Security (TLS) Feature Ex-
tension [online]. Number 7633 in Request for Comments, Oct. 2015,
doi:10.17487/RFC7633. Available from: https://www.rfc-editor.org/
info/rfc7633 [accessed 2018-04-24]

38

http://link.springer.com/10.1007/978-3-319-63688-7_19
http://link.springer.com/10.1007/978-3-319-63688-7_19
https://wiki.mozilla.org/CA:Symantec_Issues
https://wiki.mozilla.org/CA:Symantec_Issues
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://www.digicert.com/news/digicert-completes-acquisition-of-symantec-ssl
https://www.digicert.com/news/digicert-completes-acquisition-of-symantec-ssl
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc7633
https://www.rfc-editor.org/info/rfc7633

Bibliography

[16] Laurie, B.; Langley, A.; et al. Certificate Transparency [online]. Num-
ber 6962 in Request for Comments, June 2013, doi:10.17487/RFC6962.
Available from: https://www.rfc-editor.org/info/rfc6962 [ac-
cessed 2018-04-24]

[17] International Organization for Standardization. Document Management
— Portable Document Format — Part 2: PDF 2.0. ISO 32000-2,
2017. Available from: https://www.iso.org/standard/63534.html [ac-
cessed 2018-03-25]

[18] Jonsson, J.; Kaliski, B. Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1 [online]. Number 3447 in
Request for Comments, Feb. 2003, doi:10.17487/rfc3447. Available from:
https://www.rfc-editor.org/info/rfc3447 [accessed 2018-04-06]

[19] Housley, R. Cryptographic Message Syntax (CMS) [online]. Number 5652
in Request for Comments, Sept. 2009, doi:10.17487/RFC5652. Available
from: https://rfc-editor.org/rfc/rfc5652.txt [accessed 2018-04-
15]

[20] Kroah-Hartman, G.; Corbet, J. Linux Kernel Develop-
ment Report [online]. 2017. Available from: https://
go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/
Publication LinuxKernelReport 2017.pdf [accessed 2018-05-05]

[21] Freedesktop. 16770 - Support for Digital Signature. Bugs Freedesktop
[online]. Available from: https://bugs.freedesktop.org/show bug.
cgi?id=16770 [accessed 2018-04-16]

[22] The Document Foundation. Applying Digital Signatures. LibreOf-
fice Help [online], revision 2016-12-27. Available from: https:
//help.libreoffice.org/Common/Applying Digital Signatures [ac-
cessed 2018-04-14]

[23] GNOME Github Mirror. Evince: Document Viewer. GitHub [on-
line], revision 2018-04-13. Available from: https://github.com/GNOME/
evince [accessed 2018-04-15]

[24] Foxit Software, Inc. PDF Solutions for All Your Needs. Foxit Soft-
ware [online]. Available from: https://www.foxitsoftware.com [ac-
cessed 2018-04-15]

[25] Artifex Software, Inc. Ghostscript. Ghostscript [online]. Available from:
https://www.ghostscript.com [accessed 2018-04-15]

[26] K Desktop Environment Inc. Society. KPDF - More than a Reader. KDE
[online], version 0.5.10. Available from: https://kpdf.kde.org [ac-
cessed 2018-04-15]

39

https://www.rfc-editor.org/info/rfc6962
https://www.iso.org/standard/63534.html
https://www.rfc-editor.org/info/rfc3447
https://rfc-editor.org/rfc/rfc5652.txt
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf
https://bugs.freedesktop.org/show_bug.cgi?id=16770
https://bugs.freedesktop.org/show_bug.cgi?id=16770
https://help.libreoffice.org/Common/Applying_Digital_Signatures
https://help.libreoffice.org/Common/Applying_Digital_Signatures
https://github.com/GNOME/evince
https://github.com/GNOME/evince
https://www.foxitsoftware.com
https://www.ghostscript.com
https://kpdf.kde.org

Bibliography

[27] Code Industry Ltd. Master PDF Editor 4. Code Industry [online], version
4. Available from: https://code-industry.net/masterpdfeditor [ac-
cessed 2018-04-15]

[28] Tom Phelps. Multivalent. Multivalent [online], revision 2009-10-28. Avail-
able from: http://multivalent.sourceforge.net [accessed 2018-04-
15]

[29] KDE Github Mirror. Okular: KDE Document Viewer. GitHub [on-
line], revision 2018-04-13. Available from: https://github.com/KDE/
okular [accessed 2018-04-15]

[30] Mozilla Foundation, Github Repository. PDF.js: PDF Reader in
JavaScript. GitHub [online], revision 2018-04-12. Available from: https:
//github.com/mozilla/pdf.js [accessed 2018-04-15]

[31] Qoppa Software. PDF Studio Pro. Qoppa [online]. Available from: https:
//www.qoppa.com/pdfstudioviewer [accessed 2018-04-16]

[32] Canonical Ltd. Qpdfview. Launchpad [online], version 0.4.17beta1. Avail-
able from: https://launchpad.net/qpdfview [accessed 2018-04-16]

[33] Glyph, Cog, LLC. XpdfReader. XpdfReader [online], version 4.0. Avail-
able from: http://www.xpdfreader.com [accessed 2018-04-16]

[34] Lipp, M.; Ramacher, S. Zathura - A Document Viewer. Pwmt [on-
line], version 0.3.9. Available from: https://pwmt.org/projects/
zathura [accessed 2018-04-16]

[35] CAcert Inc. CAcert Software PdfSigner. CACert SVN [online], revi-
sion 2699. Available from: http://svn.cacert.org/CAcert/Software/
PdfSigner [accessed 2018-04-16]

[36] DigiSigner. Electronic Signature Service for Your Business. DigiSigner
[online]. Available from: https://www.digisigner.com [accessed 2018-
04-16]

[37] iText Group NV. Easy PDF Generation for Java or .NET Developers.
iText [online]. Available from: https://itextpdf.com [accessed 2018-
04-16]

[38] Stotz, J. P. jPdfSign. Fraunhofer [online], version 0.3. Avail-
able from: https://private.sit.fraunhofer.de/˜stotz/software/
jpdfsign [accessed 2018-04-16]

[39] Cacek, J. JSignPdf. SourceForge [online], version 1.6.2. Available from:
http://jsignpdf.sourceforge.net [accessed 2018-04-16]

40

https://code-industry.net/masterpdfeditor
http://multivalent.sourceforge.net
https://github.com/KDE/okular
https://github.com/KDE/okular
https://github.com/mozilla/pdf.js
https://github.com/mozilla/pdf.js
https://www.qoppa.com/pdfstudioviewer
https://www.qoppa.com/pdfstudioviewer
https://launchpad.net/qpdfview
http://www.xpdfreader.com
https://pwmt.org/projects/zathura
https://pwmt.org/projects/zathura
http://svn.cacert.org/CAcert/Software/PdfSigner
http://svn.cacert.org/CAcert/Software/PdfSigner
https://www.digisigner.com
https://itextpdf.com
https://private.sit.fraunhofer.de/~stotz/software/jpdfsign
https://private.sit.fraunhofer.de/~stotz/software/jpdfsign
http://jsignpdf.sourceforge.net

Bibliography

[40] Iacono, A.; Capizzi, S.; et al. Open Signature. SourceForge [online].
Available from: http://opensignature.sourceforge.net/english.
php [accessed 2018-04-16]

[41] The Apache Software Foundation. PDFBox - A Java PDF Library.
Apache [online], version 2.0.9. Available from: https://pdfbox.apache.
org [accessed 2018-04-16]

[42] Freedesktop. Poppler. Freedesktop [online], version 0.63.0. Available from:
https://poppler.freedesktop.org [accessed 2018-04-16]

[43] Pfläging, P. PortableSigner. SourceForge [online], version 2.0. Available
from: http://portablesigner.sourceforge.net [accessed 2018-04-16]

[44] Secured Signing. Free Verification Service. Secured Signing [on-
line]. Available from: https://www.securedsigning.com/products/
signature-verification-service [accessed 2018-04-30]

[45] Synopsys, Inc. The Heartbleed Bug. Heartbleed [online]. Available from:
http://heartbleed.com [accessed 2018-05-03]

41

http://opensignature.sourceforge.net/english.php
http://opensignature.sourceforge.net/english.php
https://pdfbox.apache.org
https://pdfbox.apache.org
https://poppler.freedesktop.org
http://portablesigner.sourceforge.net
https://www.securedsigning.com/products/signature-verification-service
https://www.securedsigning.com/products/signature-verification-service
http://heartbleed.com

Appendix A
Acronyms

BR Baseline Requirements

CA Certification Authority

CAdES CMS Advanced Electronic Signatures

CMS Cryptographic Message Syntax

CRL Certificate Revocation List

CT Certificate Transparency

DSS Document Security Store

DTS Document Timestamp

GUI Graphical User Interface

MitM Man in the Middle

MDP Modification Detection and Prevention

OCSP Online Certificate Status Protocol

PAdES PDF Advanced Electronic Signatures

PDF Portable Document Format

PKCS Public Key Cryptographic Standards

PKI Public Key Infrastructure

RA Registration Authority

UR Usage Rights

VRI Validation-Related Information

43

Appendix B
Program output

1. Valid signature with the store of trusted certificates provided by the
operating system (-ts)

$./pdf-sigil -f test/subtype_adbe.x509.rsa_sha1.pdf -ts

____ ____ _____ ____ _ _ _
_ \| _ \| ___	/ ___	(_) __ _(_)									
	_)					_ _______ \|	/ _‘				
__/		_		_	_____	__)		(_			
_		____/	_		____/	_	__,	_	_		

|___/

==

VERIFICATION SUCCESSFUL

subfilter: adbe.x509.rsa_sha1 (PKCS#1)
hash function: SHA-1

DATA INTEGRITY

original digest: d5 8e 3b cd 7a 82 43 a9 51 2a a4 68 48 4a f1 e3 ac 50 0f 3a
computed digest: d5 8e 3b cd 7a 82 43 a9 51 2a a4 68 48 4a f1 e3 ac 50 0f 3a
digest match: YES

CERTIFICATE

verified: YES

45

B. Program output

2. Same case as 1, however no trusted certificates were set up

$./pdf-sigil -f test/subtype_adbe.x509.rsa_sha1.pdf

____ ____ _____ ____ _ _ _
_ \| _ \| ___	/ ___	(_) __ _(_)									
	_)					_ _______ \|	/ _‘				
__/		_		_	_____	__)		(_			
_		____/	_		____/	_	__,	_	_		

|___/

==

VERIFICATION FAILED

subfilter: adbe.x509.rsa_sha1 (PKCS#1)
hash function: SHA-1

DATA INTEGRITY

original digest: d5 8e 3b cd 7a 82 43 a9 51 2a a4 68 48 4a f1 e3 ac 50 0f 3a
computed digest: d5 8e 3b cd 7a 82 43 a9 51 2a a4 68 48 4a f1 e3 ac 50 0f 3a
digest match: YES

CERTIFICATE

verified: NO

3. Same as 1 with the difference that the very last byte was changed from
0a to 20 (hexadecimal).

$./pdf-sigil -f test/modified_pkcs1.pdf -ts

____ ____ _____ ____ _ _ _
_ \| _ \| ___	/ ___	(_) __ _(_)									
	_)					_ _______ \|	/ _‘				
__/		_		_	_____	__)		(_			
_		____/	_		____/	_	__,	_	_		

|___/

==

VERIFICATION FAILED

subfilter: adbe.x509.rsa_sha1 (PKCS#1)
hash function: SHA-1

DATA INTEGRITY

original digest: d5 8e 3b cd 7a 82 43 a9 51 2a a4 68 48 4a f1 e3 ac 50 0f 3a
computed digest: be bc fe ef 5b 19 ad 1a 43 6b 61 ee 34 ab a4 ef 88 53 9d 97
digest match: NO

CERTIFICATE

verified: YES

46

Appendix C
Contents of the enclosed CD

The enclosed CD contains full source codes of the PDF-Sigil library and the
command-line tool pdf-sigil, complete text of the thesis both in its LATEX
sources and the resulting PDF as well as files for demonstration purposes.
These are PDF documents with a valid or invalid digital signature and, for
ease of use, also the compiled binaries for Linux x64 OS. The standard GNU
C library and OpenSSL with all its dependencies are required in order to run
pdf-sigil (the compilation was carried out on Fedora 28).

/...CD root
readme.txt ... CD contents
BP Stefan Tomas 2018.pdf...........................thesis in PDF
bin..executables

libpdfsigil.so........................PDF-Sigil shared library
pdf-sigil....................................command-line tool
selftest......................................libpdfsigil selftest
test.............................directory with testing PDF files

src.. sources
pdf-sigil...............................implementation sources
thesis...............................LATEX sources of this thesis

47

	Introduction
	Digital signatures
	Signature in general
	Public Key Infrastructure
	Security aspects
	Symantec CA
	Revocation

	Signatures in PDF
	Portable Document Format
	Incremental updates

	Signature in PDF
	PKCS#1
	PKCS#7 (CMS)

	Transform methods
	DocMDP
	UR
	FieldMDP

	Signature support in applications
	Implementation
	Design and preliminaries
	PDF-Sigil library
	Command-line tool
	Results
	Security

	Conclusion
	Bibliography
	Acronyms
	Program output
	Contents of the enclosed CD

